Algebra Math Problem: Solve for x when equation in root x
Find the value of x, when root x plus root of x minus root of 1 minus x equals 1
\sqrt x + \sqrt{x-\sqrt{1-x}}=1
x=?
Solution to the algebra math problem
\sqrt x + \sqrt{x-\sqrt{1-x}}=1
\Rightarrow \sqrt{x-\sqrt{1-x}}=1-\sqrt x
Square both sides then
\Rightarrow (\sqrt{x-\sqrt{1-x}})^2=(1-\sqrt x)^2
\Rightarrow x-\sqrt{1-x}=1-2\sqrt x+x
\Rightarrow -\sqrt{1-x}=1-2\sqrt x
Square both sides again
\Rightarrow (-\sqrt{1-x})^2=(1-2\sqrt x)^2
\Rightarrow 1-x=1-4\sqrt x+4x
\Rightarrow 5x=4\sqrt x
\Rightarrow \sqrt x=\dfrac{5}{4}
\Rightarrow x=\dfrac{25}{16}